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ABSTRACT
Poqlparabolic integro-differential equations of the form

t
(0.1) u (e ) + Au(e,t) + | alt - s,u(+,s))ds = £(+,t)

0
on a time-space cylinder § x [0,®) the question of convergence of solutions
to a limit solution is studied. Here A is (e.g.) the negative Laplacian,
and g(s,u) 1is typically of the structure

N
(0.2) g{s,u) = 2 ai(s)gi(u) .

i=1
The kernels ai(°) have to satisfy certain decay properties, but no
assumptions concerning the smallness of the gy or of their derivatives are
made; rather, the main assumption on the 9; is that they be monotone.
Uniform convergence of solutions and »>f their derivatives for general initial
and boundary conditions is shown; convergence rates are given which show the

dependence on the gpectrum of A and on the decay properties of the kernels
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SIGNIFICANCE AND EXPLANATION
: . Integro~differential equations arise in the description of feed-~back
control systems, where the control variables are derived from :;iltered'*’/
observations of the state or where the control mechanism possesses inertia.
oo ather STdS 2— -
‘We—study a model equation for a *distributed control system (e.g., the state
varies over some space~like domain) which contains also some diffusion effects
and give conditions under which the state will tend to some limit, as time
goes to infinity, regardless of the initial situation. The limit is shown to
satisfy an elliptic differential equation. Convergence rates are also given;
-
-ZSS; show the ;:lowing—downéy;ffect of a slow control mechanism on the

convergence of the state variable. The problem under study can also be viewed

as a natural extension of a type of reaction-diffusion equation that has

received wide attention in the literature. §
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STABILIZATION OF SOLUTIONS FOR A CLASS OF PARABOLIC INTEGRO-DIFFERENTIAI, EQUATIONS

Hans Engler

1. Introduction
The purpose of this article is a study of the asymptotic behavior of solutions of
gemilinear parabolic integro-differential equations

t
(1.1) 3tu(x,t) - Axu(x,t) + [ glt - 8,x,u(x,8))ds = £{x,t)
]

in a semi-infinite time-space cylinder Q x [0,%). Here @ is a domain in RP, Ax is

the laplacian, and g 1is a real-valued function, typically of a "semi-separable”

structure
N

(1.2) gls,x,u) = § a.(s,x) ¢ k;(x,u) .
y=1 3 ?

The precise assumptions are stated in Section 2. Equation (1.1) (with g as in
(1.2)) can be obtained from the svstem of parabolic and ordinary differential equations
(1.3) atu(x,t) - Axu(x,t) = ST(K) . G(x,t) .

(1.4) Vix,t) + Alx)Vix,t) = k(x,ulx,t))

4
at
which models a feed-back control system, where the vector 6 of controls depends on the
state variable u through a control mechanism with inertia (expressed by the matrix
differential equation (1.4)); see [12] for detailed discussions of the corresponding
ordinary differential equation and [14). We want to consider (1.1) as a natural extension

of the semilinear parabolic equation

(1.5) 3 ulx,t) = & ulx,t) + glx,ulx,t)) = E(x,t).

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. Supported by
Deutsche Forschungsgeineinschaft.
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Por (1.5) with t~independent Dirichlet-boundary data it is well-known that for §

3 -
satisfying 3 g{x,u) > 0 the solution u(°*) converges to a steady state solution u,

of

(1.6) -Axu-(x) + E(x,un(x)) = lim f(x,t) ,
t+

if the right-hand side limit exists. Moreover, if, e.g., f 18 t-independent, then

-Xot
(1.7) Tu(s,t) -y (*)V < C e

for some appropriate norm I1+1, where Xo > 0 is the principal eigenvalue of =-A

A quick proof of this fact (assuming the necessary regularity for u and f to be

t-independent) consists in differentiating (1.5) with respect to t and multiplying the

22t
0
result with e . 3tu(°,t)- After integrating over @ x [0,t] this gives the estimate

22 ¢ 2 t 2A°s 2
e * 13 ule e, - [ e * Ay 13 ule,8)1% a8
o L

(1.8)

N

t 2\ s

+f e Pav o uce,e01% as < 2 13 ue,on?
0 x t L2 2 t L2

from which the estimate
-Aot
(1.9) Iatu(',t)l $Cre

l:‘2

follows by the variational characterization of Xo,

[V w2 > A, « [ w2 for a1l wew 2.
Q x 0 Q 0

The estimate (1.7) then follows (with the L2-norm). We want to study the same questions

for the equation (1.1):

a) what are conditions on g that guarantee the convergence of u to some limit u,?

b) What are the convergence rates?

We are also going to use the same approach as sketched above.

AT




A few remarks are in order to indicate what results one can expect and under which
conditions.

(1) The equation for the limit u_ should be

ow
(1.10) -Axu- + f gi{s,x,u_(x))ds = lim f(x,t) ,
0

tro
and we would expect to get convergence for any boundary data for which (1.10) has a
solution. Also, if we want to deduce estimates like (1.7) (which imply convergence for
any initial data), then the limit equation (1.10) should have a (unique) globally stable
solution, and of course the integral in (1.10) should converge; i.e. g(s,u) should
become “small® as 8 goes to infinity. If we assume instead that
g(=,x,u) = 1lim g(t,x,u)

tem

is not identically zero, then we would only expect a solution u, to exist if

additionally (at least)

0

"

gl=,x,u(x)) [0

for the boundary data u. We shall not deal with the case g(®,+,*) § 0 here.

(i1) 1In the case of "small” perturbations, e.g.

{(1.11) f e-63 * sup Ibug(s,x,u)lds < Xo
0 X,u

for some § > 0, stability of the steady state solutjon u (from (1.10)) has been shown
in various settings (see, e.g., [5]). This would correspond to the condition
(1.12) sup Iaug(x,u)l < Xo

x,0

for the equation (1.5); we shall here look for conditions that generalize the sign

condition 3“;(x,u) > 0.




(iii) We now look at the special case

(1.13) g(s,x,u) = a(s) * (L * u + M)

with L » 0, MEeR, a(*) some kernel.

(6-distribution with unit mass at

Taking M =0, L > XA and (formally) a = §

o’ T
t = T), we see that a solution of the form
(1.14) ulx,t) = cos(@t) * ¢ (x)
of (1.1), viz. of

atu(x,t) - Axu(x,t) + L+ ulx,t -T) =0
exists on the whole real line, if

G-/Lz-xg,

1 -
T = - arc tan(%— '
w 0

(1.15)

where 00 is the normalized eigenfunction of (-Ax) for the eigenvalue Xo. This
phenomenon of "oscillations (i.e. instability) introduced by delays" is well-known and
-1

will persist if we approximate a = § by a_ =€

T e . 1[T,T+t] for some small €; cf.

[4). we shall exclude these “Hopf-bifurcation®" type phenomena by introducing certain
assumptions on the kernel a(°*) (convexity).

(iv) Taking L =0, M $ 0 arbitrary, a(s) = e-cs in (1.13), the resulting linear
equation (1.1) can be solved "explicitly” for zero Dirichlet boundary data by means of the
"variation-of-constants” formula (fundamental solution), cf. (7). As a result, the
solution will converge to the limit u_ at the rate e-Bt, where B = uin(a,xo). Hence
we expect the convergence rate for general equations (1.1) to be not better than the decay
properties of the kernel functions appearing in (1.2), or of some related gquantities
derived for the function g.

(v) Finally, {f g(x,u) =L * u in (1.5), then (for L > -Ao) the convoi?::;.):nto of
solutions will be improved, namely lu(e+,t) - u ! will be of the order e 0 « That
a similar phenomenon can not be expected for equations of the type (1.1), can be seen by

looking at the case (1.13) again, with a(s) = .—aa' M =0, Let Qn(') be an




convergence and existence results require the adaptation of a standard “bootstrapping®
technique to prove regularity and boundedness. Sections 2 and 3 only deal with the case
that g in (1.1) does not depend on x.

In Section 4 we indicate how to extend the results to arbitrary time-independent
Dirichlet boundary data and to x-dependent nonlinearities g. We also indicate how to
include more general elliptic operators instead of the laplacian. In Theorem 9, we state
a result that covers the case of (inhomogeneous, time-dependent) boundary data of the
third type,

(1.22) 3“u(x,t) + alx)ulx,t) = £,(x,t) (x e 3Q) ,
where 3v denotes the outer normal derivative. In Theorem 10, we give conditions that
imply the same convergence results for solutions of equations of higher order,

t
(1.23) 3 ulx,t) + (=8 )Mulx,t) + {) glt - s,ulx,s))ds = f£(x,t),
m > 1 some integer. We conclude with some remarks about systems and equations of higher
order with nonlinear differential operators under the integral and with open questions.

It is a pleasure to acknowledge the hospitality and the stimulating atmosphere at the
Mathematics Research Center, University of Wisconsin-Madison, and at the pepurtment of
Mathematics, Northwestern University, Evanston, where the author was a visitor while this

work was prepared.
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2. Statement of Main Results :

In this section we study the parabolic integrodifferential equation ™

t
(2.1) . ulx,t) = A ulx,t) + [ glt - s,ulx,s))ds = £(x,t) (xeq, te (0,2)
0

Gy ey

i with initial and boundary conditions ;
| (2.2) ulx,0) = ugy(x) (x e Q) ;
(2.3) u{x,t) = 0 (x e 3, 0 < ¢t < =), {
[4
Here 2 C K" is a bounded open domain with smooth boundary 39 (locally, 32 should be f
the graph of a C2+°-function, a > 0); ;4
¥
4
n a2
8. = § 5= 1is the Laplacian ,
x 2
i=1 Bx1

! and

93[0,")"‘*!

! is a given function which is (at least) continuous in both variables. The data u; and
f are given functions on & resp. on Q x [0,=),
We are interested in solutions u which are in
(2.4) tPo,w% P n w'Pro,11,LP(a))
for all 1< p <e and all T > 0. Such solutions wil'. be continuous together with their
first x-derivatives on & x (0,T] (see [10]).

Por later convenience we define .
u

(2.5) G(s,u) = [ g(s,r)ar for uewRr, s>0.
]

After possibly changing the right-hand side f, we can assume that

(2.6) g(s,0) = 0 for all s .

The assumptions on u, and f are !{
|
i




(2.7) up € W@,
1,2

(2.8) ug e W't ,

® 1 2
(2.9) feL (R x (0,T)), at: erL (0,7;L(Q)) ,
for all T > 0. For g and G, we shall use the assumptions
(2.10) u® G(s,u) is convex for all s ,
(2.11) u» -G'(s,u) exists and is convex for all s ,

(2.12) {(s,u) *» g'(s,u) 1is continuous ,

e e gy T

(2.13) g(s,u) * 0, as s + =, for all u .

.

Here

G'(s,u) = %: G(s,u) ;

2

similarly g"(s,u) = 2-5 g(s,u) etc. Finally, let Ao denote the principal eigenvalue
s

for (-Ax) on Q@ with zero Dirichlet boundary data.

Theorem 1: Let u bhe a golution of (2.1)-(2.3) in the sense described above, and let
u, and f satisfy (2.7)-(2.9) and g resp. G satisfy (2.5), (2.6), (2.10)-(2.13).
Assume that there exists a x > 0, such that for all u, g'(°*,u) is absolutely
continuous and for almost all s

(2.14) u» g"(s,u) + x » g'ls,u) is non-decreasing .

Then

(2.15) f IBtu(',t)|2dx * b(t) < Colug £} for a.e. t, t €T,

T
T T b(t)
(2.16) £ £ 1v,3,u(,t)] “ax 55 9t < Cylug,f)

(log b(t) + 1)

for every T and every § > 0.
Here
(2.17) b(t) = exp(t * min(x,2 ¢ ko)) '

where C, (resp. C,) depend on £ and on




T
1
(2.18) tug ,,  + ] ( 13,20,00% « bre)) Z2ae
w0 q

{resp. additionally on § > 0).

Theorem 2: Let u,uy,f,9 satisfy (2.1)-(2.3), (2.5)-(2.12). Assume that for all b > 0,

u such that g{(0,u) % g(0,u + h)

(2.19) 8 » log(g(s,u + h) -~ g(8,u)) exiats for all s and is convex ;
and define
- - g'{s,u + h) - g*{s,u)
(2.20) k(s) = sup| P e e 1h>0, uem g(s,u+h) ¢+ glsuwl.

Then
(2.21) [ 12 u(-,t:)l2 * b{t) € Coluy,f) for a.e. t <T,
a t
T 2 b(t)
(2.22) I v, 3,ul+,8)]%ax 5% 9t € Cilug,£)
09 (log b(t) + 1)
for every T > 0, § > 0.
Here,
t
(2.23) b(t) = exp(/ min{x(s),2 + A }ds) ,
0

and Cp, C4 depend on the same quantity (2.18) (and additionally on 6§ > 0) as the

constants in Theorem 1.

To illustrate the conditions (2.10), (2.11) and (2.14) resp. (2.19), we consider the

examples

(2.24) glt,u) = ag(t) < gylu)

and

-10~-
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N
(2.25) glt,u) = ] a(e) ¢ g (u) .
i=1
Let us assume that 00(0) =1 = ai(o) (1t € 4 < N). Then (2.10) and (2.13) hoid if
(2.26) ao(a) >0,
a,(s) + 0, as s * =,
(2.27)
9 is monotone non-decreasing ,
resp. if (2.26) and (2.27) hold for all a; and g4+ The property (2.11) will hold if
additionally

(2.28) aé(s) < 0 resp. ai(s) <0 (0 <8 <T) for all { ,

and property (2.14) is implied by

(2.29) ag(s) + x ¢ ag(s) >0 (s > 0)
resp.
(2.30) aj(s) + x + aj(s) >0 (s 0, 1<ic<N).

Pinally, for g of the structure (2.24), the assumption (2.19) means
(2.31) log ao(') is convex on [0,=) ,
and (2.20) amounts to

-a’(s)

(2.32) k(s) = = ~(log ao(s))' ’

ao(s)

such that in (2.23)

1 .
(2.33) b(t) () » Af ajls) + 2)oa (s) > 0 for all s,
22 t
resp. b(t) = e on the interval where ‘6 + 2A°a° < 0.

Similarly, if g has the form (2.25), then the assumption (2.19) holds if
(2.34) log ai(') is convex on [0,») for all 1§ ,

and in (2.20) we can take

-al(s)

(2.35) K(8) = min
1cien 218

-11-




such that in (2.23)

(2.36) b(t) = min B
1<4EN ‘1(t)

if ai(s) + zkoai(a) >0 for all s and some i, with the obvious modification

2x°t
(2.37) b(t) = e .

if on some interval (O.tol aj(t) + 2Xoai(t) < 0 for all (.

Conditions (2.29) resp. (2.30) show further that in Theorem ' g could be of the
structure (2.24) with some of the a, possessing bounded support, a possibility that is
excluded by (2.34), whereas in Theorem 2 some of the a; could decay like t-ni, which
does not give a T-independent constant « in (2.14) of Theorem 1. In the typical case
where all the a; are decaying exponentials, both results apply and give the same
formula.

From the estimates (2.16) resp. (2.22) we get some information on the asymptotic

behavior of solutions.

Corollary 3: Let u be a solution of (2.1)-(2.3) on Q x [0,®), and let all the

assumptions of Theorem | hold. Further assume that the space dimension n 1is equal to

or that
(2.38) Ig(o,u)] € ¢+ (|ul¥+ 1) for all uenRr
+*
with some C > 0, some q > 0, if n =2, and O<q<:_§, if n > 3, and that
{2.39) [ 13, £(x, )| “ax + b(t)) 24t ¢ =,
s Q
(2.40) ess sup |f(x,t)] < =

ax(0,=)

with b(¢) as in (2.17). Then

-12~
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u{*,t) + “-
(2.41) , ag t + =,
Y uls,t) + YV u
x x e

uniformly on 2, and u_  solves

(2.42) - u (x) + [ gls,u (x))ds = £ (x), (xef)
0
(2.43) u (x) =0 (x e ) ,
and
(2.44) £ = lim £(e,t) .
Lo

A few remarks about the limit equation (2.42) are in order:

(1) The conditions (2.39) and (2.40) guarantee that the IP-limit in (2.44) exists for

all p ¢ =, since

P2 ¢
{2.45) 1£(e,t) - £(*,8)1 _ < If(,t) ~ £(+,8)0 P < 0f 3 £(c,11an1
P L s
2
2 -~
t - t P
. . 2 P, drt
<c ({ 1, £ .r)ILZ b(t)ar) ({ 5) O

if s,t » ® Thus f_ exists and is essentially bounded, since it is also the weak-*-

limit of £(*,t) in L ().

(1i) The solution u_ solves the variational problem

(2.46) J(uy = f {% Iqul2 + [ G(s,ulx))ds - £ uldx + min.
Q 0

in u;'z(n). Here the integrals

(2.47) f G(s,v)ds, f g(s,v)ds
[} [}

3=

" o =




are finite for all v € R, since (2.13), (2.14) imply that

(2.48) s * (G'(s,u) + xG(s,u))

is increasing for all u and vanishes for s + ®. Thus G°'(s,u) + x * G(s,u) < 0, and
Ks

(2.49) 0 < e G(s,u) €G(O,u)

for all s and u, which proves the existence of the firat integral in (2.47). The

existence of the second integral in (2.47) follows with a similar argument.

Standard theory then shows that the solution u of the Euler equation (2.42) for

the problem (2.46) exists, is unique and is in the class f—‘ wz'p(ﬂ) (cf. [11]): We
p<=
only have to note that

vw [ g(s,v)ds
0

et

inherits the monotonicity from the g(s,u).

Corollary 4: Let u be a solution of (2.1)-(2.3) on § x [0,»), and let all the |
assumptions of Theorem 2 hold. Further assume the growth conditions (2.38) and the

boundedness assumptions (2.39) and (2.40) of Corollary 4, with b(+) given by

t
(2.50) b(t) = exp(/ min{x(s),2 * A }ds)
0

and x as in (2.20). Finally let

!‘” (log bla) + 1'*°

ds ¢ ®
0 b(s)

{(2.51)

for some § > 0. Then
u(*,t) * u

(2.52) ag t » »
qu(.lt) +> vx“"

uniformly on . The function u golves the limit. equation (2.42) with boundary

-14~




condition (2.43). Again, the conditions (2.10) and (2.11) guarantee that

(2.53) u » f g(s,u)ds
0

exists and is monotone for all u, due to

8
(2.54) sign u * g(s,u) = |g(s,u)| < |g(0,u)l = exp(f - k{1)dT)
0

1
< lgto,u)] - Blay

and the integrability of

S
b(s) ~

We also note that in the situation of both corollaries the coanvergence of higher
derivatives of (u(e,t) - u_(*)) to zero can be shown, if the right~hand side f and
g satisfy suitable smoothness properties. It is enough to show that sufficiently high
derivatives of the solution will stay bounded and to interpolate with (2.52).

We finally give an existence result for solutions of equations of the type (2.1)-

(2.3) which is sufficient to cover the cases treated ahove.

Theorem S5: Let u,, f, and g, G satisfy (2.5)-(2.12). Moreover, assume that G'(+*,u)
is continuous for every u and that

(2.5%) u® G'(s,u) - G'(s + h,u)

is convex for every 0 € s < s + h. Finally assume that

(2.56) Igto,w)l < c = (1ul?™ 4+ 1) for n>2,

+
where C is some constant, q(n) = : - ;,

if n > 3, and q(2) is some constant.
Then (2.1)-(2.3) has a solution u in the regularity class {(2.4) on Q x {0,T].

If g has the structure

N
(2.57) g(s,u) = z a;(s) ¢ gylu) ,
i=1




then Theorem 5 applies 1if the 9; are non-decreasing and satisfy the growth conditien
(2.38) and if the a, are positive, non~increasing and convex. It is possible to relax
these conditions to
(2.58) u» gl(u) + M+ u is non-decreasing
for some M > O,
(2.59) a, e w'"(f0,7,R)
a e sv({0,T),R)
a,(0) >0 .
It should be noted that the growth condition (2.56) in Theorem 5 is slightly more
general than the condition (2.38) in Corollaries 3 and 4, where the "limiting" growth

exponent is not permitted.

We finally give a result for the situation with less regular initial data.

Corollary 5.A:

(1) Let all the assumptions of Theorem S be satisfied, except that uo(') is only

required to be in L.(RI. Then there exists a weak solution u of (2.1)-(2.3) on

Q x (or'rll
(2.60) wer (o, @)y ,
(2.61) u e tPie,rw 2 P@)) a w'Pie,m1,LP@))

for any € > 0.

(ii) Let all the assumptiona of Corollary 3 hold, except that uo(-) need only be in
L.(ﬂ). Then all the conclusions of Corollary 3 hold.

(iii) Let all the assumptions of Corollary 4 hold, except that uo(°) need only be in

lf(ﬂ). Also, assume that

;e
0 v/b(s)

(2.62)

<=

with b(¢) defined as in (2.23). Then the conclusions of Corollary 4 hold.

-16~
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3. Proofs

In the proofs of Theorems 1, 2 and 5, use will be made of the following Lemma:

lemma 6: Let h : R+ R be non-decreasing, and let a,b : [0,T] + R be such that

(3.1) a 1is absolutely continuous, a' < 0 < a on (O,T)
(3.2) b>0 on [0,T)

(3.3) b * a is absolutely continuous

(3.4) s» bi(s + 1) * a'(s), s e [0,T - 1]

is non-decreasing for a.e. 1 € [0,T) .

Zet v ew'Y([0,7),R), then for 0 < ¢t < T

i G S S e PR R Y

t s
(3.5) [ v(e) + bla) + S (f als - inCvir))aTIAS
0 % 0
t
> a(t)b(t)H(v(t)) ~ a(0)b(OIH(V(0)) - [ (a(s) + bls))'H(v(s))ds
0
t
=/ als) » ble) » % nivie)as !
0 as ’ f

a
where ax H(r) = h(r).
Proof: We first assume that a e c2([0,T),®), b € c'([0,T),R), and that (3.1), (3.2) and ;
(3.4) hold. Then K

t a s
(3.6) [ bts) « vi(a) ¢« = (] a(s - Dhiv(1))aT)ds

0 % 0

t .
=] b(s) + a(0) » v'(s) « hiv(s))ds + ;
o ‘

t s
+[ b(s) » vi(s) ¢ [ a'(s - TI)n(v(1))dtds .
0 0

The first integral on the right-hand side ia

-17-
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t

(3.7) a(0) {(b(tIH(v(t)) - b(OIH(V(0))) - [ Db*(s)H({v(s))ds) . -
0
The second integral can be transformed to give %
tt
(3.8) [ [ b(s)a’(s=-T)v'(s)ds h{v(t))dr
0o

t

t
=f [b(t)a® (t=T)v(t)-b(1)a’'(0)v(T) -f g'; (b(s)a'(s~1)) * v(s)ds] « h(w(T))ar .
0 T

~ nadk e

o

The monotonicity of h implies that this is

t
e 230 [ {R(VT)) = BUOY + AB(T)a" (0))vlT) -
0

AP VAP - o P

t
- Ab(tha'(t = T)v(e) + X ¢ [ S (bslat(s - 1)v(sram)lar
T

# for all positive A. Choose A 80 small that
(3.9) 1 + Ab{t) - a'(0) > 0 <1<t f

Since also

(3.10) -b(t)a'(t - 1) >0

(3.11) 4 (bts)a'(s - 1)) » 0 :
ds

by (3.4), and !

4

t
(3.12) 1 4+ b(1)a’(0) ~ Ab(t)a’(t = 1) + A [ -

T

(b(s)a*(s - T))ds = 1,

the convexity of K now implies that the term in (3.8) can be further estimated by

-18-




t
{3.13) cee 2 [ {b(r)at(t - TIH(V(E)) - b(T)a' (0IH(V(T)) ~
0

t

K

(b(s)a'(s - T)IH{v(s))ds}dt = b(t) * H(wv(t)) * (a(t) - a(0))

e

t
+ f (b'(s)a(0) - b'(s)als) - b(s)a'(s))H(v(s))ds .
[}

Combining this with (3.7) we then get the first half of (3.5). The second half of (3.5)
is simply an integration by parts.
To get the estimate (3.5) for general a's and b's, we approximate a,b by

smooth an,bn such that the a_,b still satfisfy (3.1)-~(3.4) and

n’'n

a,(0) = a(0), b (0) = b(0) ,

a, *a
(3.14) in LYo, mm) .
b, + b
Then also
(3.15) (a, » b)) » (a+ b in L'o,mmR
and
(3.16) ({s,7) » b _(s) = al(1)) + b(s) « att) 4n t'((o,m12,R) 4

we can thus pass to the limit and get (3.5) in the general situation.

As a consequence, we get the

lemma 7: let g : [0,T) x R+ R be continuous, g' be continuous, and

b: [0,T) * [0,%) Dbe absolutely continuous,

(3.17) g(s,u) and -~g'(s,u) be non-decreasing in u for all s ,
(3.18) s® b(s + 1) * (g'(s,u+ h) - g*(s,u)) be non-decreasing for

every -* < u<€u+hd<> andall t € [0,T) .

let v e u"'(lo.'rl.l).




Then for 0 < t < T

t 8
(3.19) [ vie)  bie) » $- (f gts - Tv(1)IanIds
1] 0
t
> b(£)G(t,v(t)) = b(0)G(O,v(0)) = [ G, (s,v(s))ds ,
0
where
v
(3.20) G(s,v) = f g(s,r)dr
0
and
(3.21) Gyta,v) = $= (b(a) + Gla, ) .

3 3
Proof: We first assume that g 1is smooth; i.e. that ga = 3; 5: g 1is continuous. Then
(3.17) is equivalent to
(3.22) q“(a,u) >0 g&(s,u) for all s,u ,

and (3.18) is equivalent to

(3.23) s™ bls + 1) * g&(s,u)

is non-decreasing for every u e R, v € [0,T) .

Now write
o«
(3.24) g(s,u) = g(s,0) + [ g (s,r) * h (u)dr :
-
with
-1, v<r«<o
(3.25) h (v) = 1, 0<r<v

0 for all other r,v . !

Each hr(') is non-decreasing, and |




r-uv, veErc<o
v
(3.26) “r(V) = { hr(z)dz = v-r, 0<r<yvy
0 for all other r,v .

Inserting the representation (3.24) into the left~-hand side of (3.19) and using Lemma 6

for every term then gives

t

-]
(3.27) [ v'ts) + bls) + §o (f ols - T,vlr))aTIas
0 0
4o
> [ {bterg (t,x) + H(v(£)) = B(O)g,(0,x) * H (v(0)) ~

t
- £ %; (b(l)g“(s,r))nr(v(s))ds}dr

t
+ b(t)glt,0)v(t) - b(0)g(0,0)v(0) - [ %; (b(s)g(s,0))v(s)ds .
0

e X

An integration by parts then gives the estimate (3.19).
If g’ 1is only continuous, then the approximation

4

1 ute !
ge(s,u) =37 [ g(s,r)ar [i

u~-€
gives a smooth 9 for which the estimate (3.19) holds. The passage to the limit as !
€ + 0 is straightforward; thus (3.19) holds in the general situation.
QED.

Proof of Theorems 1 and 2:

() Let b : [0,T] + R Dbe any absolutely continuous function., Define the backward
difference operator

ELSL_:_%Ls_:_hL for h<tcrT,

dhk(:) =
if % s [0,T] * R is measurable. Wwe apply 4, to the equation (2.1), multiply with

é ’ b{t) « 4ul(t) (for h <t < t) and integrate the resulting quantity over & x [h,f).

2=




After an integration by parts, this gives the identity
1 -2 - 1

(3.28) 310,817 - n®) - 3 1ga0e,m1? < biw
2, °h 24

t t
[ 1aute,81% « b'(s)as + [ [ 19.d u(+,8)1% + bls)ds
hQ o h @ xh

VT

t s
+ [ ] d,u(*,8) * bls) * dh(I g(s - T,u(*,T))aAr)as =
h 1]

t
=f [ 4 ul+,s) *» bls) » 4 £(+,s)ds .
Lo %

Since

t
tw [ glt - s,ul*,8)ds + £{+,¢t)
0

is in w"’((O,T],Lz(Q)) by assumption, we can send h to 0 in (3.28) and obtain

t
1 - .2 - 2
(3.29) 3 f la €+, €)% b(E) - [ f [V, 0, (>,8)[" « b(s)ds
Q [+ N1
t a B I
+J [ u .8 ¢ bls) « - (f gls - T,ule,T))dT)dA8 = !
o Q 5% '

t
1 2
- {é 18 s, + £0,01%  bo) + { é lu (+,8)1% + b (s)ds}

t
+f[ [ ut,8 * bls) + £ (*,8)ds ,
0 a t t

where the index t denotes partial differentiation with respect to t. Note that a " 4
differentiation of (2.1) with respect to t shows that in fact u, (and hence Axu) are |

continuous from (0,T] with values in Lz(ﬂ) (cf. [10]).

(i1) we next choose b such that the third integral on the left hand side of (3.29) can ’

be estimated. In the situation of Theorem 1, take




(3.30)

as in (2.17) (with

b(t) = cxp(lln{lt.ﬂo} et}

k>0 as in (2.14)).

Then (2.10), (2.11) and (2.12) show that (3.17)

holds. Also, (2.14) together with this choice of b implies that (3.18) holds. Thus
Leuma 7 allows to estimate

t 8
(3.31) [ utx,8) ¢« bla) + $=(/ ats - t,u(x,T)dvIds >
0 (4]

t
> b(EIG(E,ulx,E)) - B(0)G(0,u(x,0)) - | G (s, ulx,e))de
0

for a.e. x €, Gy(s,v) = %; (b(s) * G(s,v)) = &5 . (x - Gi(s,v) + G'(s,v)),
K = min{x,20)}.  Again, (2.11) and (2.14) imply that

&“® . (G'(s,v) + XG(s,V)) € O,

and from (3.19) we get that finally
: -

(3.32) ] ut(x,s)b(a) * 3 (f g(s - T,ul{x,7))dt)ds » ~G(0,u(x,0})
) 5

for a.e. x € f.

Inserting this into (3.29) gives together with Poincaré's inequality
(3.33) [ 1o =817 ¢ B < 2 [ 6(o,uce,0) +
Q Q

t
v20 [ (18 ue,000% ¢ e, 1% ¢ 2 [ (J lu(+,81° « bla))
a oa °

Va,

1
 f 1g 0o,m1% « bla)) 2248 .
a

An application of a version of Gronwall's Lemma ({2]) then results in the estimate (2.15).

Inserting this estimate back into (3.29) we arrive at




o

t t
(3.34) [ 19, te,8017 + bls)as < cug.,£) + 11 tlegte,01% - bisras
og * 0@
1 t b'(8) 1 T
< Clug.£) = (1 + 5{) Sie) 98) = Clug,f) * (1 + 3 log bLE))

for all t. Applying Lemma 8 below gives the estimate (2.16), and the proof of Theorem 1

is complete.

{iii) To prove Theorem 2, we take

t
b(t) = exp{f min(K(s).zko}ds}
0

as in (2.23), with «x{(°*) as in (2.20). We then have to check whether (3.18) holds with
this choice of b(*). Thus let -2 < u < u+h <= and consider (for T > 0 fixed)
(3.35) s bisg + 1) (g'(s,u+ h) - g'(s,u)) .
Prom (2.19) we infer that this function is identically zero (iff g(0,u) = g(0,u + h)) or
has bounded variation. Its derivative (as a measure) is
b'(s + 1) * (g'(s,u + h) - g'(s,u)) + b(s + 1) * (g"(s,u + h) - g"(s,u)) ,

and this will be non-negative iff
(3.36) (g"(s,u + h) - g°(s,u)) > (g*(s,u) - g'(s,u + h))(g;;:':—-f—%] .
Now -log b is convex (since «x(*) is decreasing), and it is enough to verify (3.18) for
T=0 or
(3.37) (g"(s,u + h) - g"(s,u)) > (g'(s,u) = g'(s,u + h))(x(s)) .
Recalling the definition of «x(+), it is obvious that (3.37) is implied by the log-
convexity assumed in (2.19),

We thus get the estimate (3.31) as in the proof of Theorem 1. Also,
(3.38) 2 (bte) « Gls,v)) <0
or equivalently

1]
(3.39) -b;:-s- < G(s,v) < -G'(8,v) ,

which is implied by

A
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b'(8) < -g'(s,v)

b(s) q(s,v) ' if gls,v) # 0,

(3.40)
and this follows from (2.20) and (2.23).

Continuing as above, the estimate (3.33) implies the first assertion (2.15) of
Theorem 2, and (3.34) together with Lemma 8 implies (2.16), which completes the proof of

Theorem 2.

QED.
lLemma 8: Let Xk : [0,®) + [0,=), b : [0,®) + [1,®) bhe functions, let b be non-

decreasing, and assume that for every t >0

t
(3.41) [ kts) + ble)as < C; * (1 + log b(t))
0

for some C, > 0. Then for every § > 0 there exists some K{(8) > 0 such that

(3.42) [ x(s) * b(s) ¢ (1 + log b(s))~
L]

1-84s < k() * cq

Proof: If b is bounded, the assertion is clear. Otherwise define

(3.43) to =0,
(3.44) ty4q = suplt | 1tlog ™)l ¢3) for 1>0.

1 + log b(ti)
without loss of generality 1 + log b(t1+1) =2 ¢+ (1 + log b(ti)) for all {.

Fow if t > 0, such that t; > t, and §>0,

¢ -1-8
[ kts) * b(s) ¢ (1 + log B(s)} 48 &
0
1-1 Eye1 -1-8
< 1/ k(s)b{s)(1 + log b(s)) ds <
3=0 ¢t
3
i=1 1t
< jzo (1+ log ble )T ¢ cg o (1 + log blty,y))
cc . E 1 + log b(tjij)
O 420 (14 109 b(:’))"6

25~
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and the infinite series converges because

1+§
1+ logble, ) (14109 blry ) Sty
(1 + log h(cj))“‘s (1 + log ble,))

The example b(s) = e = k(s)"1 shows that (3.42) does not hold for § = 0.

Thanks are due to Bob Pego for suggesting the argument of this Lemma.

Proof of Corollaries 3 and 4: Let A, be the Laplacian in 1tP(2) with zero Dirichlet

boundary condition and its natural domain of definition D(Ap) - wz'p(ﬂ) n W;”(Q)
(1 ¢ p< ®), and let (sp(t))t<° be the analytic semigroup generated by Ap in tP(@)

(see [7]). It is well-known that

(3.45) 1a%s_(t)wl < c(p,a) (‘-;+ Vee O o 1wt ,
P P2y t P )
(3.46) v cce v’ aw
¢ (@ P rPa) wirte

if wetP@), ve D(A:), t >0, @a> 0, such that

(3.47) —E*%<a<1,

2p

p+ (4a ~ 2) - 2n
{3.48) 0 <€ <t + da - 2) <2n

Here, A: is the fractional power, defined as usually,

a

a 1 a-1 -1
(3.49) Ap"(”a){) t sp(t)dt] .

Then the solution u of (2.1)~(2.3) can be written as

M R T TS T U RN

P
N .




t t 8
u(t) = s (thuy + [ st -slf(s)ds + [ s_(t - g) [/ gls - 1,u(1))ards
o P P
0 0 0
(3.50)
= uy(t) + u,(t) ,
where the argument x has been omitted for convenience., We want to show that for

sufficiently large a,p (such that (3.47), (3.48) hold with € > 0)

(3.51) 12 u(t ) <Cc for all t >0 .
LP@)

Once (3.51) has been shown, it follows from the results of Theorems 1 and 2 and from

(3.46) that for any 0 < g, t ¢ =

(3.52) fute) - uwle)l . _ < c -+ Tus) - w(e)l®,

c (Q) w 2

Q)

t
€
< .
ceif v (ndne,
8 L

t 1+6 €
e ([ EERRH— o) vo,

as 8,t *+ ®, which will prove (2.41) resp. (2.52).

We proceed to show that (3.51) holds, by deriving the estimate for uy and u,
separately. The estimate for u, follows from the regularity assumptions (2.7), (2.8)
(which implies wu, € D(A:) for all a < 1 and all p < «), from the uniform boundedness
of 1£(*)} on [0,%), and from the property (3.45).

LP (@) -
Next we note that the W ’'“-estimate (2.16) for u, and the integrability condition

(2.51) (resp. the definition of b) imply that

(3.53) sup fu(-,t)1! 1.2 CC (o>,
o<t wo

If 2 is an interval, this implies that u is essentially bounded, and the property

1
(3.54) lg{s,u)| < N TTEN fgto,u)]

show that for all x and ¢t




et oo - A R 4 Vb S 1~ 3 i

YT

¢ " ds
1/ gtt - s,u(x,8))ds| < C ¢ | <w
0 0

The bound (3.51) then follows for u, as it followed for u,.

If the space dimension is bigger than one, (3.53) still holds. We apply l: to both
sides of the equation that defines u, (a < 1 to be chosen later, but big enough such
that (3.47) and (3.48) hold) and write
(3.55) w(t) = ess sup lAun(s)l

ocsct P tP)

for short. Then (3.45) and (3.54) give the integral inequality

t - ~A_(t-s) 8 1
(3.56) wit) < [ clp,a) » ((t -8)  + 1) e . ta =7y 19(0.u(t))1 avds
(s - 1) P
0 0 L
t
a [ B(t - s)lg(0,u(s))l ds
0 L

with some B € L’(O,”)- If n > 2, then by (2.38) for some q
(3.57) 19(0,u(e)) <ce (v +rasn? )

LP@) P Ya)
and for n = 2

(3.58) 19(0,uls) )1 <Ce (14 mml“1 , Vo
LP@) w i)

since the imbedding w'’2(2) » tP°%(Q) 1is bounded. Thus w(*) 1s uniformly bounded also

in the case n = 2 which proves (3.51) again. Finally, if n > 3, we pick a such that

(3.59) 1>a> (q-n-“;z, q as in (2.38),
and r < ® guch that
1 n-2 1 1_1 2a
(3.60) s~ la-"m rralle e el
Then from a standard calculus inequality (see (7])
(3.61) i <cev . wl“;'2 .
P 9q) w' T W' t@

-28-




(3.62) ot <c- b . lvl1;32
w'eT PPy Wit
a
< ela vl + cle) = 1vl
p 1,2
P2 Wil

for all suitable v, for some 8 < 1, and thus for all € > 0 (with some C(c) > 0).

Inserting (3.61) and (3.62) into (3.57) and the result into (3.56), we get from the

W' 2-bound for u and the L -bound for u, that

t
(3.63) wit) < [ B(t ~s8) ¢ (C(8) + 6 « wis))ds ,
0

-
and § can be made arbitrarily small. If § < % - (/ B(s)ds)~', this shows the
]
essential boundedness of w(*), which was needed to complete the proof of the
Corollaries.

QED.

Proof of Theorem S: We apply a standard fixed point argument. PFor p < @, denote by

xp('l') the space
(3.64) tPo, 1w P@ n wy o w'Poto,m 1P
= P(o, 1A n W' PCto,m,LPan
with Ap defined ag above. For 0 € 0 < ! and v @ Xpl'l'), let w = K{0d,v) be the

unique solution of

t

(3.65) 3 w(x,t} - 8 w(x,t) + 7 * [ ott - s,v(x,8))ds = f(x,t) (x€R, 0 <t< T,
0

(3.66) wix,t) = 0 (x @3, 0 < £ <T) ,

(3.67) wix,0) = ug(x) (xeqQ) .

Since xp('r) “— Co(f-? x {0,?1,R), 1if p > f + 1, with compact imbedding, w is well-
defined, and X : (0,1] x xp('r) * xp('l') is completely continuous (see (10]). Obviously,
ue xp('l‘) is a solution of (2.1)-(2.3) iff X(1,u) = u; and since K has range in

n xp(‘n, u will automatically be in the regularity class (2.4). Let now p > g + 1 i
p<=

-29- .




be fixed; we show that for some large constant M and for any 0 € 0 < 1 the conclusion

holda

(3.68) K(o,u) = u ==> '“'xp(-r) <M.,

Since there is a unique solution of X(0,u) > u, a Leray-Schauder degree argument then

shows that there must exist a solution of X{1,u) = u which is bounded by M in XP(T)
(see {17]). We proceed to show (3.68) and assume without loss of generality that

0 = 1. Thus let u be a solution of (2.1)-(2.3). Take difference quotients in t of i

(2.1), multiply with the corcesponding difference quotient of u, integrate over

Q x [0,t] and let the differences tend to zero. After an iategration by parts we get

the identity (3.29) (see the proof of Theorems 1 and 2) with b = 1.

Next observe that this choice of H  allows to estimate the term

N a "
u (+,8) » — ( g{s - t,u(*,t})dr)ds .
0oq ¢ is % l‘
!
3
1
from below by %‘
t b
(3.69) [ c(®,utx,E)19x - [ 6(0,u(x,0))ax - [ [ G*(s,u(+,8))ds > - [ G(0,ug(x))dx ,
Q ) 0Q Q :
1

by Lemma 7. Inserting this into (3.29), we get an estimate

T
2
(3.70) {”fz 17, 0,(c,8)1"ds < Clug.f) .

If the space dimension {8 n = 1, this implies a uniform bound for Ju(x,t)| and thus

for |glt - s,u(x,s))| f€for all x,s,t; thus the regularity theory in [10] gives the
bound in (3.68).

If the space dimension is n = 2, (3.70) implies that
|

(3.71) sup lu(e,t)] r < C{r,ug,f) )
0<t<T L) {
-30- !
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for all r < . Picking r big enough such that r > p * q, q the growth exponent in
(2.56), this implies a bound
(3.72) sup fg(t - s,u(*,s)) < Clug,f,q) ,

t,s 1P

since (2.11) implies that

8
(3.73) lg(s,v}] = gla,v) * sign v = [g(0,v) + f g'(t,v)ar) « sign v
0

< g(0,v) * sign v = |g(0,v)]|
for all s and v. The bound (3.72) again allows to conclude (3.68).

Finally, if n > 3, we get for any 0 < t < T (see [10])

t 8
(3.74) tur? < Clug,f) +C+ [ 1] gls = t,us,1))d01P as
X (t) 0 p
P 0 0 L
ts c
<ces (1 +[ [ rae,mN Latds)
00 L
+
with r = p ¢ : = : by (2.56). Using the calculus inequality
(3.75) |v|'r <c- lvul’2 . Ivlt;pz
L WPy WY

for this choice of r and the bound (3.70) for u, (3.74) implies an integral inequality

of the form

t
(3.76) tut? <Ce (1 +] 1P as
0

X (t X
p( ) p(s)

for all 0 < t €< T, C depending only on the data and on T. Gronwall’s Lemma then allows

to complete the conclusion (3.68). This finishes the proof of Theorem 5.
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Proof of Corollary 5.A: To prove part (i), we first solve (2,1)-(2.3) on some small strip

Q x [0,€] Dby means of a standard fixed point argument in L.(O,C)L.(ﬂ)). From standard

regularity results, the solution w will be, e.g., in
1
LPs, e Pian nw''P(s,e),1P )
for all § > 0, p < ®» (see (10]). We then re~-write (2.1) on @ x [e,T] as
t €

(3.77) 3 ulx,t) = A ulx,e) + [ glt - s,ulx,8))ds = £(x,t) -~ [ g(t - s,w(x,s))ds .
€ 0

The boundedness of w on { x [0,6] then implies that the right-hand side of (3.77) is

in (e, T @) N W"‘(E.TrLz(ﬂ)). Also, without loss of generality

(3.78) hlfe w(*,8)ds + w(*,e), as h + 0
€-h
in all wz'P(ﬂ) {(p € *). 1Indeed, for fixed p (3.78) will hold for almost every ¢
replacing €, 0 ¢ t < €, Thus (3.78) will still hold (for almost every t replacing ¢)
in all wz'“(ﬂ), N a natural number. Decreasing € 1if necessary, we find that (3.78)
holds. We now apply Theorem 5 to the equation (3.77) with boundary condition
u(s,t) e H;'Z(Q) and with initial condition wu(¢,€) = w(°,€). From the property (3.78)
it follows that the function defined by
wix,t), if t <€
ulx,t), if t > ¢

is a distributional solution of (2.1)-(2.3) on all 2 x [0,T]; thus it is a solution for

the full problem (by the unigueness of weak solutions of linear parabolic equations) in

the regularity class (2.61).

To prove {(i1), we again write the equation (2.1) as

t €
(3.79) 3 ulx,t) = B ulx,t) + | att - s,u(x,8))ds = £{x,t) = [ glt - s,ulx,s))ds ,
€ /]
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and note that as above some small € can be found which is a Lebesgue point of wu(+,t)
in a1l W'P(2) (p < ®). (Note that the solution will be in the regularity class (2.61)
for all € > 0, T < ®, by the same argument as used in the proof of part (i) above). To

apply Oorollary 3 on 2 x [€,»), it is sufficient to show that

€

(3.80) (x,£) + [ gt - s,ulx,8))ds € L (c,=;L ()
0
and that
(3.81) [ 1 q't - s,ulx,8))asl?ax b(t)) 2at < = .
€ e 0

Again, it is immediate that u will be essentially bounded on 2 x [0,e], if we choose
€ small enough; the property (3.80) then follows from the fact that g(s,u) is

increasing in u and g{(s,u) * sign u is decreasing in s. Property (3.81) follows ’i

since g°'(s,u) is decreasing in u and g'(s,u) * sign u is increasing in s (and
negative); thus, if K 4is a bound for |ul on @ x [(0,e], and writing
wis) = |g'(s,K)] + |g'(s,-K}] , !
'
W(s) = |g(s,K)| + |g(8,-K)]| ,
we have
€

o«

1

(3.82) [ 1] g'(t - s,ulx,s))ds]%ax bir)) 2at
€ Q0

® ¢ 1 1/
<[] wit - s1as * b 2(v)at - 19| 2
€0

® 1
<ce-f (W(t-e)-W(c))'b/zlt)dc<-,
€




1
(3.83) lgts,x)| € 55 * 1g(0,K)|

and b is an exponential function.
To prove (i1ii), we use exactly the same arguments. Since in this case b(s) is not
necessarily an exponential function, we need the integrability condition (2.62) to deduce

(3.81) from (3.83).




4. Extensions and Generalizations

The initial-boundary value problem (2.1)-(2.3) represents a typical, however special
situation, in which the "energy-type®" estimate leading to the inequalities (2.15), (2.16)
can be applied. Several extensions are immediate which we want to mention here, without
stating them as separate results.

First, it is clear that the case of inhomogeneous, but constant boundary data, in
which (2.3) is replaced by
(4.1) u(x,t) = uo(x), (x e 23q, t » 0)
with ug e wz"m), presents no additional difficulties. Solutions of (2.1), (2.2),
(4.1) will still be in the class {2.4), and all the results of Section 2 are valid without
any modification, since it was only assumed in the proofs that 3tu|30(.’t) 20 in

" 1/2 (3Q). By considering v(x,t) := u{x,t) - uy(x), this problem can be reduced to a :

problem of type (2.1)-(2.3) with an x-dependent function g in the integral term; this

leads to the modification of (2.1): i 4
t '
(4.2) atu(x,t) - Axu(x,t) + [ glt - s,x,ulx,s))ds = £(x,t) (xeq, t e (0,=)) .
0

If gqg(*,*,*) is continuous in all three argquments, and if all the properties assumed
for g hold uniformly with respect to x, similar results to Theorems 1, 2 S and
Corollaries 3, 4, SA are immediate, since only the pointwise version of Lemma 7 was used
in the proofs. To show Theorems ! and 2 it is, in fact, only necessary to assume that
|lg(s,u,x)} € u(x) * M(T,R) for all s < T, lu] SR,

with u GL‘(Q), and that g be measurable in x for fixed s,u and continuous in
(s,u) for a.e. x. To show the convergence of solutions (Corollaries 3, 4) or the
existence (Theorem 5), it will be necessary to assume that u € Lr(ﬂ) for some r > 1
and to relate r to the growth conditions formulated in (2.38) resp. in (2.56). Since

these generalizations are not immediately motivated and more or less straightforward, we !

shall not give the details.

|
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The question of t-dependent Dirichlet boundary data seems to be more delicate; we do
not have a satisfactory way of generalizing our results to this case.
It is also immediate from the proofs that all results remain valid if -Ax is

replaced in (2.1) by a second order operator in divergence form,

(4.3 Agru+ ] 3 (a (x)3 w),
1,9=1 xi i) xj

with C‘+°(§)-coe£f1clenta ay 40 which is uniformly elliptic. It is even possible to
include a general operator on a possibly unbounded domain @,

(4.4) Azu> |} (3x (a,

i . j(X)ax u + b(x)u) + C

(x)3x cu}l + A&x) ¢ u,

I

as long as a Garding-type inequality

2
(4.5) (Au,u) >A, » IV ut
2 ! x ()

holds with A1 > 0. The constant A1 then replaces the eigenvalue Ao in (2.17) and
(2.23) and in the corresponding conclusions.
We next indicate how to obtain generalizations of these results to some related t

problems.

Boundary conditions of the third type.

The problem (2.1), (2.2) with the boundary condition
(4.6) Bvu(x,t) + a(x) * u(x,t) = £,(x,t), xe€23q t>0 :
can also be treated. Here 3v is the (outer) normal derivative, a(°*) > 0 4is some c'-
function, and f, : M x [(0,») + R is a given function. We assume that
(4.7) a§0
which implies that the principal eigenvalue k1 of the negative laplacian with a
homogeneous boundary condition (4.6) is positive: '

(4.8) A =inel] 1w+ acwilve wia), [wia1)>0. i
a X n Q i
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We state the corresponding result on the existence and asymptotic behavior of solutions as

Theorem 9:
a) Let ug. f, g, and G sgatisfy (2.5)-(2.7), (2.9)-(2.12), (2.55) and (2.56). Also,
let
« 1, 1,° ®
(4.9) f1 eL (0,»;W (aQ))n w ([0,=),L (3f))
and assume that
(4.10) 3vuo tacu - 21(-,0) on 3R .
Then the problem (2.1), (2.2), (4.6) has a solution u on Q x [0,@) which is for all
T >0 and all p < * in the regularity class
(4.11) ip(r) = tPlo, T P n w''Pero,11,LP ) .

b) If also (2.13) and (2.14) hold for some k > 0 and

L]
1

(4.12) [ ey - f |3tf(-,t)lz) Rac ¢ =,

0 Q

1

- 2r ;
14.13) J 13,£,02,8)17°)" + blslas < =,

0 n

with r=1, if n=1, r > 1 arbitrary, if n=2, r = 5—&—1, if n> 2, and

(4.14) b(s) = exp(t * min{x,2 * A, - e)}) ,

where X, is defined in (4.8) and X1 >€E > 0, then

(4.15) f I3tu(x,t)lzdx s b(t) < C, for all t >0,
2
* 2
(4.16) [ 19,3 utx,e)) %ax - b(t) g dt < Cg for all 6> 0.
00 (log b{t) + 1)

Here C,, cs depend on u; and on the quantities in (4.12) and (4.13).
Also, if g satisfies the sharper growth condition (2.38), then
(4.17) ule,t) »u, in C'(A), as t =,

where u_(°) solves the elliptic equation
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-du_(x) + | g(s,u_(x)}ds = lim £(x,t) ,
0 t+o

(4.18)

Bvuw(x) + a(x) ¢ uo(x) = lim f,(x,t) .
tyo

c) If in addition to the conditions in a) (2.19) holds and with «(°*) as in (2.20),

X1 >E >0,

t
(4.19) b(t) = exp(f min{x(s),2 * (A, -~ erlas) ,
0

the data satisfy (4.12) and (4.13), then again (4.15) and (4.16) hold. If b satisfies

for some § > 0

© 1+8
(4.20) j e b(::s; o s,
0

and if the growth condition (2.38) holds for g, then also the convergence conclusion
(4.17) is true, and the limit u, satisfies the equation (4.18),
Before we indicate the proof, it should be remarked that the limit

1,

lim £ (-, t) € W “(an)

t o

exists due to the assumptions (4.9), (4.13), and (4.18). From the general theory for
elliptic boundary value problems (cf. [10]) it follows that u_ € Hz'p(ﬂ) for all

p < =,

Proof of Theorem 9: The main new problems in the proof, compared with the arguments given

in Section 3, arise from the fact that the boundary data in (4.6) now depend on t. Hence
we shall only give the details for the changes that are necessary for this phenomenon, and
remain sketchy in the unchanged parts of the proof. Also, since no new differences appear

between the proofs for b) and c), only the former statement will be proven.
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We start with showing the estimates (4.15) and (4.16) for a solution u that belongs

already to the class (4.11) for all p < @ and all positive T. From the definition of
Y and from standard trace and imbedding theorems, cf. [10]), it follows that for all

1
1,2
wew (R) and all € > 0

1

o
(4.21) J Iwalz sf aswir0 -6 wrcte) o (f wIFEHE,
) n Q an
teh r o= =25 tn (4.13)
w r 35 -7+ T 4as in (4. , resp.
(4.22) [ w? + ata) + wi(a) + atb) « win) >
Q

>0y -e) s [ w4 cte) - wRta) + wRib))
Q
if n=1 and Q = (a,b] CR. Here C(e) > 0, if € > 0. Define b(*) as in (4.18)
and proceed as in the proof of Theorem 1, i.e. differentiate the equation (2.1) (formally)
with respect to t, multiply with b(t) * 3 u(e,t), and integrate over Q x (0,€l. We

then arrive at an identity of the form (3.29), with additional terms

t
(4.23) [ ] atx) + 13,utx,8)1%d0(x) + bls)as
o 3

appearing on the left-hand side and

t
(4.24) I 3 ulx,s) * 3 £ (x,8)do(x) * b(s)ds
0 29

appearing on the right~hand side. The quantity (4.24) can be eatimated by




et Al AP P e S Vet o I sk S i M

- 1 1
t v 3o b
(4.25) [ 131?03 (13, e 1202 - pia)as

o an "

- 1
1 t 2rt 17
<3 cle) - I 13 ,uts,8) 17" )"« bls)as +

o

sxe [ 1 e 12T - biaras
o 30

LN A

with C(€) > 0 from the trace inequality (4.21). Using now (4.13) and the term (4.25) on
the left-hand side and estimating all other quantities as in the previous proof, we get
again the inequality (3.33) (with the modified b(+)}), with some additional constants
appearing on the right~hand side. The rest of the pro>f then remains unchanged, and the
estimates (4.15) and (4.16) follow. In the case of one space dimension the procedure only
needs some formal modification. Note that Btu is (at least) in L2(0,T1H1'2(R)), so
that the trace of 3tu actually exists.

Next, we give the necessary extension of the arguments for the existence proof. The
previous arguments show that under the assumptions stated in part a), any solution of

(2.1), (2.2), (4.6) satisfies an a priori estimate
T 2
(4.26) [ 1193 ute, )1 %axat < ¢
on *°t
for all T > 0, C only depending on the data. This estimate is to be exploited in a

bootstrapping argument, with the proper modification for the inhomogeneous boundary

conditions. We write the solution as u = Wyt vy, where

t
(4.27) atv1(',t) - Axv1(-,t) + £ g(t - a,(w1 + wz)('.a))ds = £(s,t) - atv2(°,t) ’
(4.28) v1(',0) =u, - wz(',o) '
(4.29) 3vv1 +a . v, 20 on 3N x (0,7 ,
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(4.30) -sz('.t) =0,
(4.31) avvz(-,t) +a() wz(',t) = £1(°,t) on 3 x [0,T) .

Using the same type of degree argument as in the proof of Theorem 5 in Section 3, it
is gufficient to show that vy and w, are a priori bounded in any ;p(T) (see
(4.11)). Sstarting with Wy, we denote by B the operator that maps boundary data v to
solutions w = Bv of

-Axw =0 4in 2
(4.32)
va +a°*w=y on M.

Since X‘ > 0, the well-known results on non-homogeneous boundary value problems apply,
see [13],
(4.33) 5w PTon) . WP

is bounded for all p < =, vhqre the fractional order Sobolev spaces are defined as in

1--

P
(s> w P (30) for all p, the condition (4.9) implies that

1,

[13]. Since W

P 2,p
wy @ L7(0,TW (R)) for all p. Also, from [13],

1+ 1 -§,p
(4.34) B:tP@a) »w P (2)
is bounded for every § > 0, which shows that also w, € w".([O,T],Lw(Q)) C
1

w Prro,71,LP(2)) for al1 p < =,

To show that v, e ;p(T) for all p < * it is enough to invoke the general
regularity results in (8] for solutions of linear evolution equations of “"parabolic”
type. Also, observe that the right-hand side f - 3tw2 in (4.27) is in Lp(o,TyLP(ﬂ))
for all p < ® and that the initial data for vy is in all Hz'p(ﬂ) and satisfies the
compatibility condition

avw‘(',O) +a - v1(',0) =0

by construction. The ;p(T)-bonnd for w, then {s obtained by means of the same
"bootstrapping®™ argument as in the proof of Theorem 5, making use of the growth conditions

on g. It remains to show the convergence
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u(+,t) » u, -
(4.39%) uniformly orn R .
qu(',t) * quw

Define Ep as the Laplacian in Lp(ﬂ) with
D(;p) = (we Wz'p(ﬂ)lavw +ae =0 on 90} ,

and let (gp(t))t> be the analytic semigroup generated by ;p in Lp(ﬂ) (gee [7]).

0

Then analogous estimates of (3.45), (3.46) hold, the decay rate Ao being replaced by

A1 from (4.8). We write u = wy t Was Wy the solution of (4.30), (4.31), v,y defined

as the solution of (4.27)-(4.29), i.e. as

t
(4.36) wilt) = S (€)(uy = wy(0)) + g S,(t ~ 8)(f(s) - 3 w,(s))ds

t s
+ [ Sr -8)f gls - 1,w (1) + w, (1))d1)ds ,
0 P 0 1 2

where the x~dependence has been suppressed for convenience. The convergence result (4.17)

then follows as in the proof of Corollaries 3 and 4 if it can be shown that

(4.37) sup tw (*,t)t <=,
0 2 w2P(q)
~Qa
(4.38) sup 1A w‘(~,t)l < @
e20 P P

for a sufficiently close to 1 and p sufficiently large (p > n). The estimate
(4.37) again follows from (4.33) and the conditions on f4; (4.38) is derived in exactly
the same way as the corresponding estimates for the solution of the Dirichlet problem in
(3.53)-(3.63). This concludes the proof of Theorem 9,
QED.
We remark that the conditions leading to the existence of solutions can be weakened
to resemble those in Theorem 5. The necessary modifications in the statement and in the

proof are obvious.
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Mixed boundary conditions, nonlinear boundary conditions.

The boundary conditions (2.3) resp. (4.6) for the integro-differential equation (2.1)
can be further combined and generalized. We briefly indicate two possibilities.

Pirst, assume that 31 can be split into two parts, 30 = r1 U Pz, which we assume
to be closed and disjoint (to avoid regularity problems at the interface points).
Replacing the boundary conditions (2.3) resp. (4.6) by

u(*,t) 20 on P1 for 0 < t

(4.39)
avu(',t) + a(*) * u(-,t) = f‘(°,t) on Pz for 0 < t

then gives a mixed boundary value problem that can obviously be treated in the same manner
as the problems discussed further above. The eigenvalue
=l Ve acWiwenw P, v -0, | W=
Q Pz 1 Q
then gives the decay rate for the associated homogeneous heat equation and replaces X‘
in Theorem 9, giving the same sort of convergence result.
It is also possible to replace (4.6) by a nonlinear boundary condition
(4.40) avu(',t) + B{u{-,t})) =0 on 239, t >0
with B8 : R+ R being a (locally) Lipschitz-continuous function that is monotonically
increasing. Under the assumption that
(4.41) 8'(r) > ay > 0 for a.e. r
convergence results can be established, showing that the integro-differential equation has
solutions that converge to an equilibrium state u_. The role of the eigenvalues XO,A‘
is played by
0

A, = inf{] 19 vlz +a_ [ vzlw e w"z(n), / vl 1} .
3 a = 2

n

However, in this situation it is not possible to employ directly results from linear

semigroup theory to show, e.g., the existence of a solution in the class described in
{1 =

(2.4) or the convergence u(*,t) * u,(*) in C (R). Rather, direct methods for the

"unperturbed” problem (g(s,u) = 0) will have to be carried over; cf. (6].
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Bquations of higher order

For the evolution equation

t
(4.42) 2 ulx,t) + (-Ax)“u(x,c) + ] glt - s,ulx,s))ds = £(x,t) (x €8, 0<¢t)
0
with initial and boundary conditions
(4.43) u(*,0) = uo(') in Q,
= [ Y = = -1 . =
(4.44) “("‘"an E 3vu( ,t)lm 2eee 23 ul ,t:)lan =0

similar convergence (and existence) results can be derived. In (4.42), m > 1 is some
integer, and in (4.44) a: denotes the k-th normal derivative (with respect to the outer
normal of ). We assume here that 32 is in the class c2-+a' a> 0.

Semilinear equations of the type (4.42), with the integral term replaced by
go(u(x,t)), have been discussed by various authors; cf. [9] for a general existence and
reqularity result. We define (for fixed m)

A= 1nf(rf! IV:vlzlv e w;'z(m, ‘jzvz =1},

Then Xd > 0 gives the decay rate for solutions of the "unperturbed” equation (4.42)
(£ =0, g=0), as can be seen from the theory of analytic semigroups ([7]). For (4.42),

we have the following result that is parallel to the previous theorems:

Theorem 10: Ilet g,G satisfy (2.5), (2.6), (2.10)-(2.12), and (2.55). Assume that for

n? 2m
(4.45) lgto,wl € ¢« (IwlP™™ 4 q) for a1l wenm,
C being some constant, p!2™™) 1eing some positive number, and
(n,m) . B+ 2m
(4.46) P . i n> .
Also, let
2m,® m,2
(4.47) y ew @ a Wi i

and let £ satisfy (2.34).
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Then the problem (4.42)-(4.44) has a solution u on Q x (0,®) which is in the
class
P 2m,p 1p P
(4.48) YP(T) = LY(0,T;W M)n w (fo,T1,L7 (M)
for all p < ® and all positive T.

b) If g also satisfies (2.13), (2.14) for pome « > 0 and if

- 1
2,72
(4.49) J (btey « [ 13 £+, 8)1°) at ¢ =
0 a ¢
with
(4.50) b(t) = exp(t » -tn(x,zx‘) ,
then (4.15) and
® 2 b(
(4.51) [ ] 193 utx,t)) %ax t) T < S
oa (log b(t) + 1)
hold for all & > 0. Here cs depends on u, and on the quantity in (4.49). Also, if a %;

strict inequality holds for the growth exponent in (4.46) and if f {is essentially

uniformly bounded on  x (0,®), then

(4.52) u(e,t) + v, in ¢ (), as t + =, ,
where u_(*) solves the elliptic problem

(-Ax).u_(x) +[ gts,u(x))as = lim £(x,t)
0 t+o
(4.53)
u S vee 20
"‘an
¢) If in addition to the conditions in a) (2.19) and (2.20) hold for g and if the
data f satisfies (4.49), b(°) defined by

t )
(4.54) blt) = exp([ nin{x(l).ZX‘)dl) ’
0

‘ ~45= i




x(*) as in (2.20), then again (4.15) and (4.51) hold. If b satisfies (4.18) for some

§ >0, if strict inequality holds for the growth exponent in (4.46), and if f |is
essentially uniformly bounded on @ x (0,#), then also the convergence (4.52) holds, and !

u, solves the elliptic problem (4.53).

The proof of this theorem does not differ from the arguments given in Section 3;

TR

hence we do not give its details and only point out the necessary changes. First, under

-

the assumptions of part b) and c¢), the estimates (4.15) and (4.51) follow in precisely the

T

same way as in the proofs of Theorems 1 and 2 - the temm (-Ax)nu in the equation (4.42)
1,2

—
-~

P X ey i

leading to an estimate for the wm'z-norm of 3tu rather than for the W -norm as in,

e.g., estimate (2.16). Similarly, under the conditions stated in part a), an estimate

T
(4.55) S 1 19" ute,er1%ae < claata,
0 x t

e <
- o

follows. Next, to prove existence (in part a}) and the convergence results in part b) and

c), it is again convenient to re~write the solution u by means of a variation-of-

constants formula,

t t s
ult) = 5 (thug + [ 5 (t - s)flslds + [ S (t -8) [ gls ~ T,u(1))drds ,
P 0 P 0 P Q

where x-arguments have been omitted. Here gp(') is the analytic semigroup generated by

(-Ax)m = Kp tn LP(R) under zero Dirichlet boundary conditions (4.44). Then (3.45)

holds, instead of (3.46) we have for all n < p <=

(4.57) Wi, . _ <co T |v|€m 5
™D P Py Wt

if ve n(i:), 1>a5>0, such that 1 -a and € > 0 are sufficiently small (cf. [7]),

Aepending on the size of p.
|

As in the proof of Corollaries 3 and 4, it is enough to prove that under the

conditionas of Theorem 10




(4.58) 1 ule)d <c
P ()

T

for some a and p such that (4.57) holds. This is again done by a “"bootstrapping”
argument for n > 2m and by direct arguments for n € 2m. First, if n < 2m, then the a

priori estimate (4.55) together with suitable embedding theorems ([10]) shows that

u(*,t) 1is uniformly (in t) bounded in any Py, p€ew if n<2m p<=, |if
n = 2m., The estimate (3.54) together with the growth condition (4.45) (if n = 2m) shows

that the same type of bound also holds for the nonlinear term

t
I gl(t - s,u(*,s))ds .
0

Using (3.54) and this bound in the variation of constants formula (4.56) then implies the

bound (4.58), in the same way as in the case of an elliptic operator of second order.

e LU

If n > 2m, we define w(°) as in (3.55) (with ip replacing Ap) and derive the

estimate (3.56) (with X‘ instead of xo). Then pick a such that

(4.59) 1>a> (pin,m) = 1) ¢ % . .

p(n,m) as in (4.46), and close enough to 1 such that (4.57) holds. Next choose r < =

such that
1 n-~-2m 1 n - 1 1 2am

(4.60) P (p(n,m) = 1) o~ F — > i
This implies ((7])

~ ~
(4.61) P ~<cem « P

t.p P "Zr‘l,r '-,2 '
and
4.62) i <e o 1A%+ clertvl
(4. wzn-l,r PP '-,2

]

for all suitable v, for all € > 0 (with some C(€) > 0), and with the abbreviation

From (4.61) and (4.62) and from the variation of constants formula, we get

; = p(n,m).




m T —

an integral inequality for w(°*) which can be chosen such that it has only bounded
solutions. ‘“This completes the proof of (4.58) and thus of parts b) and c) of Theorem 10.
For the proof of part a), a fixed point argument as in the proof of Theorem 5 is
used, together with optimal regularity estimates in the spaces YP(T) (cf. (4.48)); see
(8) for the necessary estimates for linear problems. Details are left to the reader.
QED.
Again, as in the proofs of Corollaries 3 and 4 as compared to the proof of Theorem 5,

using only the “sub-optimal” reqularity estimates that are contained in (3.45) excludes

n + 2m
- 2m *

the "limiting® growth exponent but displays the asymptotic behavior of the
solution semigroup more clearly.

For the semilinear version of (4.42)-(4.44) (the integral term replaced by
go(u(x,t)), it is known that global solutions u exist, if gy has, e.g., the same

growth properties that are assumed for g(0,°) in Theorem 10.a). However, in the case of
n + 2m

n-2m'’
Also, for the limit equation (4.53), the existence and regularity of solutions has

the limiting growth exponent reqularity is much harder to prove, cf. [9].

been shown in (16], again for the case that corresponds to the limiting growth exponent
n + 2m

n - 2m ' by means of direct methods for elliptic equations. It is not clear how to

extend the convergence result of Theorem 10.b, ¢ to the case of a limiting growth
exponent, except for “"small” nonlinearities (g(s,*) multiplied by € ¢ g(s,*)). To do
this, one uses the "optimal” arowth estimates in the spaces YP(T) and notices that the
assumption on the spectrum of (-A)m (X4 > 0) allows to get T-independent constants in
the corresponding regularity estimates.

We conclude with a few remarks concerning systems of (second order) equations with
integral terms of the form in (2.1) and higher order equations of the form (4.42) with

nonlinear integro-differential operators
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a B
(4.62) £ '0%<- 3. 9,0t = 8.3 ut>,8)) ) Qs
instead of the polynomial type integral operator in (4.42).

In the case of a system, it is still possible to handle finite sum integral operators

of the form

M t
> L 4
(4.63) 1] ate- 8)g, (ul+,8))ds
i=1 0
with scalar kernels '1(.) and vector functions ;1(5) - VEGl(E), the G, being convex,
by utilizing a suitable vector-valued version of Lemma 6 (which holds almost without

change in the wording). Similarly, for integral operators of the type (4.62) having the

form

(4.64) It f att -8 1 2% (e - o, (3Pu(e, 8 )as
) 0 1= laf<m x%a T T B em

aimilar results can be derived, if the q: are of the form

laf |

(4.65) gi(E) = (1) 5%~ cle), 6! convex ,
a

and satisfy suitable growth estimates.

Open Questions.

a) It is not clear whether solutions of (1.1) or of the related problems discussed above
will be unique under the assumptions that have been used, in contrast to the situation
for the seailinear parabolic equation (1.5), where monotonicity of ;(x,-) implies
uniqueness. A sufficient condition for the unigqueness of solutions of (1.1) is that

g(s,x,*) bhe locally Lipschite-continuous in u uniformly for (x,s) in some

Q2 x [0,e). On the other hand, it is also well-known that solutions of the limit
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b)

c)

equation (2.42) are unique (with the boundary conditions discussed above), if

u f g(s,ulds
0

is merely monotone non-decreasing.
For the semilinear equation (1.5), the existence of regular solutions, convergence

{1 =
rates as (1.9), and the convergence u{°*,t) + u (*) in C (R) follows without growth

restrictions on the nonlinear term §, since it is possible to bound solutions

uniformly on £ x (0,*) by means of the maximum principle. It is not clear whether
these properties still hold for solutions of (1.1), if one drops the growth

restrictions (2.38). The existence of oscillatory solutions with positive initial

data (cf. Section 1) shows that a comparison principle does not hold.
Using the regularizing effects of the non-linear semigroup that is generated by

u+s -Au+ g(u)
in tP() (1 < p < =), it is still possible to show the convergence u{°*,t) + u ()
for less regular initial data (see [18]): One shows that for some € > 0 the
solution u of (1.5) will be in Lm(g,eth(ﬂ)) and hence (via linear semigroup
theory) wu(e+,e) € C2(§). Taking u{*,€) as an initial value, one sees that the
regularity of u(+,0) plays a minor role for the convergence behavior. For the
integro-differential equation (1.1), the regularity of u on f x (0,6) does play a

role, since the effect of irregular initial data is not “forgottean®™ due to the

presence of the integral term. Thus it will in general not be possible to extend the

class of initial data for which convergence in C‘(ﬁ) can be shown beyond 1?(9) (as

described in Corollary S5A). It is conceivable that convergence in some 1P(2) can be

shown Lf g(s,*) satisfies some polynomial growth conditions and ug is in some

L), r < .
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4)

For solutions of the semilinear equation (1.5) as well as of the limit equation

(2.42), the solution can vanish identically on some parts of 1, if, e.g.,

glu) ~ ua, as u * 0,
with 0 < a < 1, and the boundary data and the size of I are in some sense
compatible ({19]). It is not clear whether this free-boundary phenomenon still holds

for solutions of the integro-differential equation.
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